

\begin{tabular}{|c|c|c|}
\hline \& What is the result when the largest number in the set \(\left\{\frac{1}{8}, 2, \frac{1}{4}, 0.3,8\right\}\) is divided by the smallest number in the set? \& 15. 64 \\
\hline \& \begin{tabular}{l}
Simplify \(\frac{3}{\left(\frac{1}{-3}\right)}\) \\
a. \(\frac{1}{3}\) \\
b. 9 \\
c.-9 \\
d. -1
\end{tabular} \& \begin{tabular}{l}
16. \\
a \\
b \\
c \\
d

\square
\end{tabular} \\

\hline \& | $2 \div 1=(22+44) \div ?$ |
| :--- |
| a. $(2+4)$ |
| b. 11 |
| c. 22 |
| d. $(11+22)$ | \& 17. \\

\hline 18 \& What is 6.5% of 270 ? \& 18. 17.55 \\

\hline \& \begin{tabular}{l}
Calcuate the value of \(s\) such that \(8 s-6=0\). \\
a. \(s=\frac{3}{4}\) \\
b. \(s=-2\) \\
c. \(s=2\) \\
d. \(s=-\frac{3}{4}\)
\end{tabular} \& \begin{tabular}{l}
19. \\
a \\
b \\
c \\
d

\end{tabular} \\

\hline 20 \& Half of a third of a number is 1,801 . What is the number? \& 20. 10,806 \\

\hline \& \begin{tabular}{l}
Solve for \(x\) : \(20 x=16\). \\
a. \(x=-\frac{4}{5}\) \\
b. \(x=\frac{4}{5}\) \\
c. \(x=-4\) \\
d. \(x=320\)
\end{tabular} \& \begin{tabular}{l}
21. \\
a \\
b \\
c \\
d

\end{tabular} \\

\hline \& \begin{tabular}{l}
Solve for \(n: \frac{n^{2}-5 n}{n-6}=0\). \\
a. \(n=0,5,6\) \\
b. \(n=0\) \\
c. \(n=0,5\) \\
d. \(n=0,6\)
\end{tabular} \& \begin{tabular}{l}
22. \\
a \\
b \\
c \\
d

\end{tabular} \\

\hline \& Find the value of $\frac{1}{5+\frac{1}{5+\frac{1}{5}}}$ \& 23. $\frac{26}{135}$ \\

\hline 24 \& \begin{tabular}{l}
Evaluate: \(-1^{20}+(-1)^{21}\) \\
a. -2 \\
b. -1 \\
c. 0 \\
d. 1
\end{tabular} \& \begin{tabular}{l}
24. \\
a \\
b \\
c \\
d

\end{tabular} \\

\hline 25 \& \begin{tabular}{l}
Compute: \(\frac{17}{32}-\frac{4}{25}\). \\
a. \(-\frac{68}{57}\) \\
b. \(-\frac{297}{800}\) \\
c. \(\frac{13}{57}\) \\
d. \(\frac{297}{800}\)
\end{tabular} \& \begin{tabular}{l}
25. \\
a \\
b \\
c \\
d

\end{tabular} \\

\hline \& \begin{tabular}{l}
Each equilateral triangle shown has a perimeter of 6 . What is the perimeter of the parallelogram? \\
a. 6 \\
b. 8 \\
c. 12 \\
d. 18
\end{tabular} \& \begin{tabular}{l}
26. \\
a \\
b \\
c \\
d

\square
\square
\end{tabular} \\

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
27. In the figure below, assume all the angles that appear to be right angles are actually right angles. What is the perimeter of the figure? \\
a. 9 \\
b. 16 \\
c. 17 \\
d. 18
\end{tabular} \& 27. \\
\hline \begin{tabular}{l}
28. Solve for x . \\
a. \(25^{\circ}\) \\
b. \(30^{\circ}\) \\
c. \(55^{\circ}\) \\
d. \(150^{\circ}\)
\end{tabular} \& \begin{tabular}{l}
28. \(\qquad\) b \(\qquad\) c \\
d

\square
\end{tabular} \\

\hline | 29. Pi's Pizza Palace sells a 6 -inch diameter pizza for $\$ 6$, an 8 -inch diameter pizza for $\$ 8$, and a 10 -inch diameter pizza for $\$ 10$. Which is the best buy? |
| :--- |
| a. the 6 in pie |
| b. the 8 in pie |
| c. the 10 in pie | \& \[

29. $$
\begin{aligned}
& \text { a } \quad b \quad c \\
& \square \square \square
\end{aligned}
$$
\] \\

\hline | 30. k is an unknown number between -4 and -5 . Which is the largest number? |
| :--- |
| a. $-k+5$ |
| b. $\frac{k+4}{2}$ |
| c. $\frac{k+2}{2}$ | \& \\

\hline \begin{tabular}{l}
31. Three of these expressions are equivalent. Which one is NOT? \\
a. \(x-y+z\) \\
b. \(x+z-y\) \\
c. \(-y-(z-x)\) \\
d. \(x-(y-z)\)
\end{tabular} \& \begin{tabular}{l}
31. \\
a \\
b \\
c \\
d

\square
\square
\square
\end{tabular} \\

\hline
\end{tabular}

SPECIAL Which of the following statements is true? There may be more than one correct answer.

- 3^{5} is greater than 5^{3}.
$\square x^{3}$ is always greater than x^{2} when x is positive number.
$\square x$ is always greater than $\frac{1}{x}$ when x is positive.
$\square x+1$ is always greater than x for any number x that can be represented on the number line.
\square If x and y are both positive numbers and if $x>y$, then $-x>-y$.
- If x and y are both positive numbers and if $x>y$, then $-x<-y$.
\square If x and y are both positive numbers and if $x>y$, then $\frac{1}{x}$ is always greater than $\frac{1}{y}$
\square If x and y are both positive numbers, then x always equals y.

12th Annual
Oklahoma School of Science and Mathematics Middle School Mathematics: An Awesome Contest March 8, 2014

Parents' names: (Please print)

Directions: Use the scratch paper provided to do your work. Calculators are allowed, but not necessary. Write the answer(s) to each question in the box to the right of the question. Units are given in plural form even if the singular form is correct. All fractions should be in simplest form, $\frac{3}{2}$ not $1 \frac{1}{2}$.

This is a 31-question, 1-hour contest. The special question on the last page may be used to break ties. Each question is worth one point. Your score will be the number of correct answers (excluding the tie-breaker). There is no partial credit or penalty for wrong answers. Please continue working or reworking problems until time is called

Do Not Open or Turn Over Until Instructed To Do So

