Oklahoma School of Science and Mathematics Middle School Mathematics: An Awesome Contest
 February 23, 2013

Directions: Use the scratch paper provided to do your work. Calculators are allowed, but not necessary. Write the answer(s) to each question in the box to the right of the question. Units are given in plural form even if the singular form is correct. All fractions should be in simplest form, $\frac{3}{2}$ not $1 \frac{1}{2}$.

This is a 28 -question, 1 -hour contest. The 28th question is on the last page and it will be used to break ties. You must show your work on the 28th question. Each question is worth one point. Your score will be the number of correct answers (excluding the tie-breaker). There is no partial credit or penalty for wrong answers. Please continue working or reworking problems until time is called.

1.	1.
2. $a \times b=30$ and $c \times d=4$ Calculate $a \times b \times c \times d$.	2. 120
3. $2 x+3 y=95$ and $x-y=10$ What is the value of x ?	3. 25
4. In the triangle below, what is x (in degrees)?	4. 30°
5. $a+b=200$ and $a-b=100$. What is $2 \times b$?	5. 100
6. Given $x \otimes y=\frac{\left(x^{3}-y^{3}\right)}{x^{2} y}$ find $7 \otimes 4$. Express your answer as a fraction.	6. $\frac{279}{196}$
7. k and n are the smallest integers such that $\mathrm{k} \div 2 \div 2 \div 2 \div 2$ and $\mathrm{n} \div 2 \div 2 \div 2$ are each a positive integer. Find $k+n$.	7. 24
8. In the two squares shown, the perimeter increases 100% from the smaller to the larger square. What is the percentage increase in area?	8. 300%
9. $(a+5) \times b=340$ and $(a-4) \times b=187$ What is the value of $a \times b$?	9. 255
10. If $\left\{\begin{array}{c}a+2 b+4 c=321 \\ \text { and } \\ b+2 c=160\end{array}\right.$ then $a=$?	10. 1
11. How many 6 digit numbers end in 2013 ? a) 90 b) 99 c) 100 d) 2013	11. Circle one: a b c d
12. Six OSSM students can assemble 24 bicycles in 8 hours. How many bicycles can three OSSM students make in four hours?	12. 6 bicycles
13. Express the decimal sum as a reduced fraction. $0.45+0.305+0.05$	13. $\frac{161}{200}$
14. Solve the inequality for $x .-\frac{x+\frac{4}{3}}{7}>\frac{10}{21}$	14. $x<-\frac{14}{3}$
15. Anna is 10 years old. Her mother Rose is 5 times as old. How old will Rose be when Anna is twice as old as she is now?	15. 60 years old
16. In the sequence below, the sum of the numbers in any 3 consecutive boxes is the same. Find z.	16. 219
17. There are 8 students in a very small high school. If the student council is composed of 5 students, how many different student councils could be chosen?	17. 6,720

18. Bart rolled two dice and got two 1 's. He rolled again and got two 1's once more. What is the	18.	$\frac{1}{1,296}$
probability of rolling two one's twice in a row? Express your answer as a fraction.		
19. In the figure below, a large square is made up of 16 smaller squares. How many different squares of varying sizes can one find in the figure?		

Tie-Breaker: The figure below depicts an arch over the Washington Parkway in Washington D.C. The arch is 100 feet wide and 20 feet high in the middle. The formula $y=k x(100-x)$ describes the arch if the origin is located at the left end of the arch. Can I drive an oversize load that is 15 feet high and 45 feet wide through the arch? Please determine how wide the arch is when it is 15 feet high.

Show your work.
Place a box around your answer.

$$
\text { Yes - When arch is } 15 \text { feet high, it is } 50 \text { feet wide. }
$$

